
Smashing Exploit Detectors:
The Java Exploits Case

Donato Ferrante
(@dntbug)

CounterMeasure

Ottawa, 8 Nov 2013

ReVuln

Who?
• Donato Ferrante

o Co-Founder and Principal Security Researcher at ReVuln Ltd.

• donato@revuln.com

• twitter.com/dntbug

 ReVuln Ltd.

ReVuln Ltd. 2

We talk about

Java

+

Old Java Exploits

ReVuln Ltd. 3

Why Java?

ReVuln Ltd. 4

Why Old Exploits? (1/2)

 *

ReVuln Ltd. 5

From WebSense [1] “real-time telemetry about which versions of Java are

actively being used across tens of millions of endpoints..”

* At the time of this report

Why Old Exploits? (2/2)

ReVuln Ltd. 6

From Kaspersky [2]

Welcome to Java World

ReVuln Ltd. 7

Java World
Updated

30%

Outdated

70%

 • Impossible to give an exact estimate

• Average based on publicly available info

• Without using any 0-day vulnerabilities an

attacker can target ~70% of the Java users..

ReVuln Ltd. 8

Java Users

.. But if you are using an outdated

version of the JRE, you may feel safe

because you are using pro-active

/ pro-* / detectors to spot whenever

an old vulnerability is used against

your systems..

ReVuln Ltd. 9

Our Goal
• To be able to bypass detections of these detectors

on exploits for old vulnerabilities

ReVuln Ltd. 10

Attacker

Defender

The Defenders
• We randomly selected a number of different

defensive solutions, including:
o Microsoft Security Essential / Defender

o AVG Internet Security 2014

o F-Secure Antivirus

o TrendMicro Titanium Max Security

o Symantec Norton 360

o And others..

• We had to pick a subset, because for obvious
reasons we didn’t want to upload any sample
using new techniques on VirusTotal, etc.

ReVuln Ltd. 11

The Attackers
• An old vulnerability (CVE-2012-4681) and an old exploit

to harden (original exploit [3] by @jduck)

• Via Applet
o A Java Applet is an application written in Java

o Embedded on a web page

o Executed within a Java Virtual Machine (JVM)

• in a process separate from the web browser itself

ReVuln Ltd. 12

Applets

ReVuln Ltd. 13

The security manager is a class that allows applications to implement

a security policy. It allows an application to determine, … , what the

operation is and whether it is being attempted in a security context

that allows the operation to be performed.

Workflow
• The workflow is something like:

o Get access to sun.awt.SunToolkit

• Supposed to be a restricted package

o Call methods indirectly to trick the JVM Verifier

o Get access to a private field of Statement
• Via SunToolkit.GetField()

o Define a new access control context

• All permissions

o Create a Statement to disable the Security Manager

o Use the Field to change the permission of the Statement

o Disable the Security Manager

ReVuln Ltd. 14

Detection Rate

ReVuln Ltd. 15

• We used the basic version of the exploit

Microsoft Security
Essential / Defender

AVG Internet
Security 2014

TrendMicro
Titanium Max

Security

Symantec Norton
360

F-Secure Antivirus

Exploit:Java/CVE-
2012-4681.AIN

Java/Exploit.BBJ JAVA_EXPL.SM4 Web Attack:
Malicious JAR

Download CVE-
2012-4681

Exploit:Java/CVE-
2012-4681.F

The Bytecode
• One of the “weaknesses” for Java code is in the

bytecode, as you can see it discloses a lot of

information:

ReVuln Ltd. 16

Hardening: Base

ReVuln Ltd. 17

Introduction
• Back in 2011, I (with inREVERSE [4]) presented at the

CARO conference a study on Java malware,

vulnerabilities, and about common techniques used

to avoid detections [5].

• Surprisingly most of these techniques are still widely

used and still effective nowadays..

ReVuln Ltd. 18

Techniques
• While these techniques add nothing new to this

area, they are still interesting to know

• We are going to quickly cover the following

techniques, just for the sake of completeness:
1) Flooding based

2) De-numberation

3) Reflection

ReVuln Ltd. 19

Flooding based
• Add a random number of:

o Fake Variables

o Fake Methods

o Method chains

o Control-flow directives

ReVuln Ltd. 20

De-numberation
• If an attacker uses Strings they will appear as plain-text in

the ConstantPool*..

• An attacker can use numbers instead:

o String = [char] = [number]
o On numbers, one can perform math operations to obfuscate the original

String, and load the real string in memory only when needed at Runtime

ReVuln Ltd. 21

Reflection
According to IBM [6]: “Reflection gives your code

access to internal information for classes loaded into

the JVM and allows you to write code that works

with classes selected during execution, not in the

source code. This makes reflection a great tool for

building flexible applications”.

In our opinion the last sentence should be:

“.. This makes reflection a great tool for building

flexible exploits”.

ReVuln Ltd. 22

Reflection: Proxy Call

ReVuln Ltd. 23

1

2

1

2

3 4

3

4

5 5

5

Detection

ReVuln Ltd. 24

• We applied a combination of these techniques

• The detection dropped from 30 to 12 (average)

• If you are interested in this kind of hardening, there is a good

blog post [7] about evading AV by @SecObscurity

Microsoft Security
Essential /
Defender

AVG Internet
Security 2014

TrendMicro
Titanium Max

Security

Symantec Norton
360

F-Secure
Antivirus

Exploit:Java/CVE-
2012-4681

Java/CVE-2012-
4681

- - Exploit:Java/CVE-
2012-4681.F

Hardening: Advanced

ReVuln Ltd. 25

Sharing

ReVuln Ltd. 26

Sharing
• In general, Applets on the same page share the

same JVM

• So what happens if an attacker uses multiple

Applets to cooperatively exploit a vulnerability?

• If almost none of the Applets cooperating to exploit

the vulnerability is doing anything obviously evil

per-se, how can you detect them?

ReVuln Ltd. 27

Sharing: Stage I
• Exploit-divide

o Split the original exploit code in several sub-exploits

ReVuln Ltd. 28

Exploit

Code

Code

Sharing: Stage II-a
• Applet-divide

o Deploy the code to different Applets (even legit ones)

ReVuln Ltd. 29

Exploit

Code

Code Applets

Code

Sharing: Stage II-b
• Applet-divide

o Deploy the code to different Applets (even legit ones)

o The concept..

ReVuln Ltd. 30

1 : 1

1 : 4

Before..

..After

EXPLOIT : APPLET

Sharing: Stage III
• Run

o The master (main) Applet will instruct the minion Applets to execute their
code in a given sequence

o Note that the Master Applet is optional, minions can execute their code
independently or agree on a specific order.. without using any explicit
communication

ReVuln Ltd. 31

1, 2.. wait.. calc

ReVuln Ltd. 32

1

2

Cheap way to sync

Recap
• We can harden Java exploits by splitting the

original exploit code into a number of different
cooperating Applets

• The more the attacker splits the original exploit the
harder will be to detect it

• The exploit may be difficult to understand statically
o Don’t think just about exploit Applets, think about mixing/injecting the

exploit code across a number of legit Applets

• We didn’t use any explicit Applet communication..

ReVuln Ltd. 33

ReVuln Ltd. 34

AppletContext

AppletContext
• An interface that can be used by an Applet to

obtain information about its environment

• This interface corresponds to an Applet’s

environment: the document containing the Applet

and any other Applet on the same document

• It’s like calling a function of a “remote” Object:

ReVuln Ltd. 35

AppletContext
• There are several methods, we are mainly

interested in:

o Applet getApplet(String name)

• Finds and returns the Applet in the document represented by this
Applet Context with the given name

o Enumeration getApplets()

• Finds all the Applets in the document represented by this Applet
Context

• Let’s see a practical example..

ReVuln Ltd. 36

The Plan

ReVuln Ltd. 37

5 Applets to exploit

3 Applets to confuse

1 Applet to communicate

The Channel
• Communication

ReVuln Ltd. 38

• An Applet

• Define a channel structure

• To Send/Receive messages

• Blocking (optional)

• Easy way to deal with Applets

synchronization

Blocking

The Workflow

ReVuln Ltd. 39

Channel Logic Applets Interaction

Master

ReVuln Ltd. 40

Master
• Applet M

1) Produce Class<?>

2) Send Class<?>

3) Try to pwn..

ReVuln Ltd. 41

Try to pwn

Connect to Channel

Send Class<?>

Produce Class<?>

Zero

ReVuln Ltd. 42

Try to execute calc.exe

Class<?>

Zero
• Applet 0

1) Wait for Class<?>

2) Produce Expression

3) Exec Expression

4) Produce Field

5) Send Field

ReVuln Ltd. 43

One

ReVuln Ltd. 44

Try to execute calc.exe

Class<?>

Execute Expression

Field

One
• Applet 1

1) Produce Permissions

2) Produce AccessControlContext

3) Send Permissions

4) Send AccessControlContext

ReVuln Ltd. 45

Two

ReVuln Ltd. 46

Try to execute calc.exe

Class<?>

Execute Expression

Field

AccessControlContext

Do Permissions and

 AccessControlContext

Two
• Applet 2

1) Produce Statement

2) Wait for Field

3) Wait for AccessControlContext

4) Set Field

5) Send Statement

ReVuln Ltd. 47

Three

ReVuln Ltd. 48

Try to execute calc.exe

Class<?>

Execute Expression

AccessControlContext

Statement

Do Field and Statement

Field

Do Permissions and

 AccessControlContext

Three
• Applet 3

1) Wait for Statement

2) Disable Security Manager

ReVuln Ltd. 49

Three

ReVuln Ltd. 50

Try to execute calc.exe

Class<?>

Execute Expression

Field

AccessControlContext

Do Permissions and

 AccessControlContext

Statement

DisableSecurityManager

Do Field and Statement

Class<?>

Execute Expression

Field

AccessControlContext

Do Permissions and

 AccessControlContext
Statement

DisableSecurityManager

Do Field and Statement

Master Again

ReVuln Ltd. 51

Execute calc.exe

Remaining Applets
• Applet 4,5,6 ?

ReVuln Ltd. 52

Recap
• Take Java exploits hardening to the next level

• Useful to increase the level of complexity

• It’s basically using Java with Java

• What about mixing languages?

ReVuln Ltd. 53

ReVuln Ltd. 54

JavaScript

JavaScript
• The Java-JavaScript functionality supported by the JRE is

called LiveConnect

• LiveConnect is a feature of Web browsers that allows
Java and JavaScript software to intercommunicate
within a web page

• From Java: it allows an Applet to invoke the embedded
scripts of a page or to access the built-in JavaScript
environment

• From JavaScript: it allows a script to invoke Applet
methods, or to access the Java runtime libraries

ReVuln Ltd. 55

JavaScript
• To use JavaScript, Java code needs:

o netscape.javascript.*

• If you reference these JavaScript classes, you will

need to add plugin.jar to your CLASSPATH

• At Runtime, the Java Plugin automatically makes

these classes available to the Applets, so no

changes to the Applets or how they are set up are

necessary

ReVuln Ltd. 56

The Plan I

ReVuln Ltd. 57

The Plan II

ReVuln Ltd. 58

• NOTE: the following is only one of the possible ways

to implement this kind of communication

HTML Page

ReVuln Ltd. 59

JavaScript

“Status info”

 (debugging)

Applet

JS-side Code

ReVuln Ltd. 60

1

2

…

return a string

print some status info via div

use some JS obfuscation on

the process name: calc.exe

Java-side Code I

ReVuln Ltd. 61

define JS-gate

Java/JS

Function mapping

The Final Mix

ReVuln Ltd. 62

LiveConnect
• Can use information coming from HTML tags

• Can use information coming from JavaScript

• JavaScript code can be obfuscated, etc..

• Can use multiple Applets with JavaScript comm.

• Requires to evaluate both: Java and JavaScript

ReVuln Ltd. 63

What about detection?

ReVuln Ltd. 64

Detection Rate

ReVuln Ltd. 65

0

• When using sharing techniques and a very minimal

obfuscation..

ReVuln Ltd. 66

1,2,3,…,1000 JVM

Multiple JVM
• Applets can run in different JVMs

o Even if they are on the same document

• We need to set the following parameter:
o separate_jvm = true

• Running in multiple JVMs has two implications:
o Attackers:

• Can’t rely directly on the status of the “shared” JVM

• Need to split the original exploit carefully

• X-JVM communication

o Defenders:

• Possible in-memory detection should be now performed on a set of
different JVMs

ReVuln Ltd. 67

Multiple JVM

ReVuln Ltd. 68

An example of X-JVM communication

ReVuln Ltd. 69

X-Origin

X-Origin

ReVuln Ltd. 70

From: http://docs.oracle.com/javase/tutorial/deployment/applet/security.html

They cannot connect to or retrieve resources from any third party server
(any server other than the server it originated from).

X-Origin

ReVuln Ltd. 71

• It’s tricky

• We can’t leave the domains where the Applets are

hosted

• But we can share information/resources across

different remote domains hosting different Applets

• JavaScript!

X-Origin

ReVuln Ltd. 72

http://domain-R/app.htm

http://domain-L/app.htm

ReVuln Ltd. 73

Quick Recap

Quick Recap
• There are several ways to harden Java exploits:

o Single or Multiple JVM

o No-communication

• Timers or brute-forcing of the JVM status

o With communication

• AppletContext and JavaScript

o On different or same domains

• We want more..
As part of the exploit code is still in “bytecode”
o Even if in this case it’s scattered among different Applet/HTML/JavaScript

pieces

ReVuln Ltd. 74

ReVuln Ltd. 75

Serialization

Introduction
• That’s ACED cafe.. babe

• Serialization is the process of translating data
structures or object state into a format that can be
stored [..] and resurrected later in the same or
another computer environment [8]

• A sequence of bytes

• Can be used to recreate Object
in memory..

ReVuln Ltd. 76

Serialize and Deserialize

ReVuln Ltd. 77

An Object can be serialized or deserialized via:
o public final void writeObject(Object x) throws IOException

o public final Object readObject() throws IOException, ClassNotFoundEx.

Deserialization

ReVuln Ltd. 78

readObject()
• The readObject() method is called by the JVM

whenever it will try to deserialize an object.. A good

spot to place callbacks

ReVuln Ltd. 79

Using Serialized Object

ReVuln Ltd. 80

1

2

3

GET /SerialPay.class HTTP/1.1

4

Disable Security Manager
5

6

Serialized Object

Caveat I
• If we serialize a non-standard JRE class..

ReVuln Ltd. 81

ReVulnSerial + .class

wget http://remote_host/pwn/me/ReVulnSerial.class

CN len CN value
magic

Weak Links
• A weak link is a serialized object related to a

non-standard JRE class

• Because of its nature a weak link will disclose* its original
class (and its bytecode) during deserialization

• To avoid weak links and reduce the amount of info in a
class file, an attacker can go over all the classes
required by the exploit and check whether they are
standard & serializable JRE classes.. and prune..

• Welcome Exploit Pruning..

ReVuln Ltd. 82

Exploit Pruning
It produces a mutation M(E) of an input exploit E, reducing the bytecode
info, without introducing weak links.

1. Select* a Serializable and Standard Class C in E

2. Collect all the code that updates the status of an object O (type C)

3. Check for dependencies*

4. Prune this code (P)

5. Use the pruned code P to produce a serialized object S, which

represents the updated status of the object O in the exploit context

6. Replace P in E, with an assignment like: O = deserialize(S)

7. Repeat* steps from 1 to 6

ReVuln Ltd. 83

Exploit Pruning

ReVuln Ltd. 84

Caveat II
• More info re. Serialization format..

• No .class definition No info on the ACED stream.. FALSE!

• Serialization format detailed in:

o Java Object Serialization Specification, Chapter 6 [9]

• No CAFEBABE from ACED but..

ReVuln Ltd. 85

//// BEGIN stream content output

ReVulnSerial _h0x7e0001 = r_0x7e0000;

//// END stream content output

//// BEGIN class declarations (excluding array classes)

class ReVulnSerial implements java.io.Serializable {

}

//// END class declarations

//// BEGIN instance dump

[instance 0x7e0001:

0x7e0000/ReVulnSerial

 field data:

 0x7e0000/ReVulnSerial:

]

//// END instance dump

Caveat II cont.

ReVuln Ltd. 86

 dntbug$ hexdump -C serial

00000000 ac ed 00 05 73 72 00 07 4d 79 43 6c 61 73 73 88 |....sr..MyClass.|

00000010 6b d3 a0 8a 04 46 a3 02 00 03 44 00 04 72 65 5f |k....F....D..re_|

00000020 64 49 00 04 72 65 5f 69 4c 00 04 72 65 5f 73 74 |dI..re_iL..re_st|

00000030 00 12 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 |..Ljava/lang/Str|

00000040 69 6e 67 3b 78 70 3f f0 00 00 00 00 00 00 00 00 |ing;xp?.........|

00000050 00 00 74 00 06 52 65 56 75 6c 6e |..t..ReVuln|

0000005b

read: MyClass _h0x7e0002 = r_0x7e0000;

//// BEGIN stream content output

MyClass _h0x7e0002 = r_0x7e0000;

//// END stream content output

//// BEGIN class declarations (excluding array

classes)

class MyClass implements java.io.Serializable {

 double re_d;

 int re_i;

 java.lang.String re_s;

}

//// END class declarations

//// BEGIN instance dump

[instance 0x7e0002: 0x7e0000/MyClass

 field data:

 0x7e0000/MyClass:

 re_d: 1.0

 re_i: 0

 re_s: r0x7e0003: [String 0x7e0003:

"ReVuln"]

]

//// END instance dump

Recap
• A good strategy to add a layer of obscurity

• ACED stream is an array of bytes/numbers, which

means obfuscation++

• Exploit Pruning helps to reduce the amount of

information available directly from the bytecode

ReVuln Ltd. 87

Hardening Consideration
• How to detect hardened exploits:

(some of the possible strategies)

o Use serialization?

• ACED parser

o Use JVM sharing?

• Memory inspection

o Use AppletContext?

• Emulator

o Use LiveConnect?

• Emulator + Emulator

ReVuln Ltd. 88

Emulators
Some of the most advanced

detectors on the market use

internal emulators to perform

detection on the Java bytecode..

There are several tricks to bypass emulation-based

defenses, and the following slides highlight one of the

possible strategies..

ReVuln Ltd. 89

Exceptions
• An interesting trick to defeat most of the emulators

is to rely on exceptions

• In Java we have: try/catch/finally statements

• A JVM Exception is represented by a couple:
o <pc, exception_type>

• A JVM Exception handler is instead:
o <pc_start, pc_end, pc_handler, exception_type>

ReVuln Ltd. 90

Plan
• The idea is simple

• Build a chain of exception handlers, by using:

try { } catch(){ } finally { } blocks

• Deploy the exploit code into each exception handler

• Try to avoid: throw new Exception()

• Try to use/abuse JVM Runtime Exceptions
o i.e. exceptions thrown via Runtime when misusing APIs

ReVuln Ltd. 91

Attack

ReVuln Ltd. 92

L

O

G

I

C

DEMO TIME

ReVuln Ltd. 93

Conclusion

ReVuln Ltd. 94

Conclusion I
• There are several interesting ways to harden Java exploits

• Applets can cooperate with other Applets and/or JavaScript
and/or HTML to exploit vulnerabilities

• Applets can cooperate across multiple JVMs on the same or
different domains

• Serialization can be used to reduce the information coming
from the Java bytecode

• Exceptions can be used to defeat emulation

• The strategies shown can be obviously used to harden exploits
for 0-day vulnerabilities

ReVuln Ltd. 95

Conclusion II

ReVuln Ltd. 96

Current defense solutions can’t help against hardened

Java exploits. There is only one valid way to be safe

against old Java issues (at the moment):

KEEP YOUR JRE UPDATED OR DELETE IT

Conclusion III
• Detected doesn’t mean it didn’t run on your pc..

ReVuln Ltd. 97

Thanks to..

 Nico Waisman (@nicowaisman), for the feedback

on an early draft of this preso

ReVuln Ltd. 98

References
1) Websense on Java attacks

http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
2) Kaspersky Lab Report: Java under attack – the evolution of exploits in 2012-2013

http://media.kaspersky.com/pdf/Report_Java_under_attack_2012-2013.pdf
3) @jduck original exploit for CVE-2012-4681

http://pastie.org/4594319
4) inREVERSE

http://www.inreverse.net
5) CAR02011 – Java Malware Presentation

http://www.inreverse.net/wp-content/uploads/2011/05/DonatoFerrante-JavaMalware.pdf
6) IBM on Java Reflection

http://www.ibm.com/developerworks/library/j-dyn0603/
7) Java Exploit Code Obfuscation and Antivirus Bypass/Evasion (CVE-2012-4681) (@SecObscurity)

http://security-obscurity.blogspot.com/2012/11/java-exploit-code-obfuscation-and.html
8) Serialization

http://en.wikipedia.org/wiki/Serialization
9) Java Object Serialization Specification

http://docs.oracle.com/javase/7/docs/platform/serialization/spec/protocol.html

• Oracle Old Java Releases

http://www.oracle.com/technetwork/java/archive-139210.html
• CVE-2012-4681 Java 7 0-Day vulnerability analysis by @mihi42 via DeepEndResearch (@DeepEndResearch)

http://www.deependresearch.org/2012/08/java-7-vulnerability-analysis.html
• Java 0day analysis (CVE-2012-4681) by Esteban Guillardoy (@sagar38)

http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
• What Applets Can and Cannot Do

http://docs.oracle.com/javase/tutorial/deployment/applet/security.html
• jdeserialize: a toolkit for manipulating/reverse-engineering Java serialization streams

https://code.google.com/p/jdeserialize/

ReVuln Ltd. 99

http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://media.kaspersky.com/pdf/Report_Java_under_attack_2012-2013.pdf
http://media.kaspersky.com/pdf/Report_Java_under_attack_2012-2013.pdf
http://media.kaspersky.com/pdf/Report_Java_under_attack_2012-2013.pdf
http://pastie.org/4594319
http://pastie.org/4594319
http://www.inreverse.net/
http://www.inreverse.net/wp-content/uploads/2011/05/DonatoFerrante-JavaMalware.pdf
http://www.inreverse.net/wp-content/uploads/2011/05/DonatoFerrante-JavaMalware.pdf
http://www.inreverse.net/wp-content/uploads/2011/05/DonatoFerrante-JavaMalware.pdf
http://www.inreverse.net/wp-content/uploads/2011/05/DonatoFerrante-JavaMalware.pdf
http://www.inreverse.net/wp-content/uploads/2011/05/DonatoFerrante-JavaMalware.pdf
http://www.inreverse.net/wp-content/uploads/2011/05/DonatoFerrante-JavaMalware.pdf
http://www.ibm.com/developerworks/library/j-dyn0603/
http://www.ibm.com/developerworks/library/j-dyn0603/
http://www.ibm.com/developerworks/library/j-dyn0603/
http://www.ibm.com/developerworks/library/j-dyn0603/
http://www.ibm.com/developerworks/library/j-dyn0603/
http://security-obscurity.blogspot.com/2012/11/java-exploit-code-obfuscation-and.html
http://security-obscurity.blogspot.com/2012/11/java-exploit-code-obfuscation-and.html
http://security-obscurity.blogspot.com/2012/11/java-exploit-code-obfuscation-and.html
http://security-obscurity.blogspot.com/2012/11/java-exploit-code-obfuscation-and.html
http://security-obscurity.blogspot.com/2012/11/java-exploit-code-obfuscation-and.html
http://security-obscurity.blogspot.com/2012/11/java-exploit-code-obfuscation-and.html
http://security-obscurity.blogspot.com/2012/11/java-exploit-code-obfuscation-and.html
http://security-obscurity.blogspot.com/2012/11/java-exploit-code-obfuscation-and.html
http://security-obscurity.blogspot.com/2012/11/java-exploit-code-obfuscation-and.html
http://security-obscurity.blogspot.com/2012/11/java-exploit-code-obfuscation-and.html
http://security-obscurity.blogspot.com/2012/11/java-exploit-code-obfuscation-and.html
http://security-obscurity.blogspot.com/2012/11/java-exploit-code-obfuscation-and.html
http://en.wikipedia.org/wiki/Serialization
http://docs.oracle.com/javase/7/docs/platform/serialization/spec/protocol.html
http://www.oracle.com/technetwork/java/archive-139210.html
http://www.oracle.com/technetwork/java/archive-139210.html
http://www.oracle.com/technetwork/java/archive-139210.html
http://www.oracle.com/technetwork/java/archive-139210.html
http://www.deependresearch.org/2012/08/java-7-vulnerability-analysis.html
http://www.deependresearch.org/2012/08/java-7-vulnerability-analysis.html
http://www.deependresearch.org/2012/08/java-7-vulnerability-analysis.html
http://www.deependresearch.org/2012/08/java-7-vulnerability-analysis.html
http://www.deependresearch.org/2012/08/java-7-vulnerability-analysis.html
http://www.deependresearch.org/2012/08/java-7-vulnerability-analysis.html
http://www.deependresearch.org/2012/08/java-7-vulnerability-analysis.html
http://www.deependresearch.org/2012/08/java-7-vulnerability-analysis.html
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
http://immunityproducts.blogspot.com.ar/2012/08/java-0day-analysis-cve-2012-4681.html
http://docs.oracle.com/javase/tutorial/deployment/applet/security.html
http://docs.oracle.com/javase/tutorial/deployment/applet/security.html
https://code.google.com/p/jdeserialize/

 Thanks!
• Questions?

- Donato Ferrante

- donato@revuln.com

- @dntbug

ReVuln Ltd. 100

“Invincibility lies in the defense, the

possibility of victory in the attack.”

ReVuln Ltd. - revuln.com

